NM WRRI Student Water Research Grant Final Report Form Progress Report due October 1, 2020 Draft Final Report due April 30, 2021 Final Report due May 31, 2021

1. Student Researcher: Sergei Shalygin Faculty Advisor: F. Omar Holguin

2. Project title: Assessment of the cyanobacterial Harmful Algal Blooms (cHABs) and toxins in the blooming water bodies of New Mexico

3. Description of research problem and research objectives.

Scientific questions related to water quality and drinking waters has become more and more urgent in the age of expensive industry and agriculture, worldwide. Nutrient load from the fields and waste waters from industry along with Climate change are sculpturing natural equilibrium in the water ecosystem. This global trend has become vivid in the State of New Mexico with past summer mysterious shut down of several recreational lakes. Cyanobacterial Harmful Blooms (cHABs) is a recent ecological problem in the lakes and rivers of the USA (Meyer et al. 2017, Kramer et al. 2018) and globally (Sciuto et al. 2015, Sendall and McGregor 2018). Toxins produced during cHABs (and subsequently released to the water column) causes human death (Blaha et al. 2009, Svirčev et al. 2019) and animal mortality (Trevino-Garrison et al. 2015). Potent cyanobacterial toxin - microcystin causes fatal liver damage in humans (Carmichael 1994). Recently described cyanobacterial genus Aetokthonos is responsible for the death of Bald Eagles, due to toxin production (Wilde et al. 2014). In the water bodies of the State of New Mexico, several cHABs were detected in summer 2019 (Abiquiu and Cochiti Lakes were shut down because of large coastal Microcystis blooms, https://www.youtube.com/watch?v=TcnnvniF5ng), and scientist associated pet's mortality with these events (https://www.ewg.org/keyissues/water/toxicalgae). However, information concerning cHABs in the state of NM is inadequate and in need of development. The State of New Mexico is a center of agriculture and our desert climate requires intensive irrigation, which is largely surface irrigation from water systems like the Rio Grande river and other open water bodies such as lakes and reservoirs. Agricultural nutrient load, together with high summer temperatures, are known factors of cHABs development. These factors suggest a need for extensive monitoring of irrigation and recreational water bodies within the State of New Mexico.

We are proposing the following aims for this research:

Aim 1. Biomonitoring of endogenous cyanobacterial toxic species in the water system of the Rio Grande.

Macroscopic biomass of the cHABs will be collected and analyzed phenotypically under a microscope. At the same time, genomic DNA will be extracted, and it will be sent for Next-generation sequencing of the toxin-producing genes. Biomass and water quality parameters (pH, temp, alkalinity, N, P) will also be quantified.

Aim 2. Detection of the cyanobacterial toxins with mass spectrometry from both water samples and biomass.

It is possible that blooms will not be visible; we will be targeting biomarkers from the water samples for mass spectrometry. Both toxins and bioactive compounds from the blooms and the

water column will be concentrated and extracted and analyzed, utilizing high accuracy mass spectrometry.

4. Description of methodology employed.

Samples of water/biomass were collected in the Rio Grande water system (Caballo reservoir and Elephant butte Lake) and in the following lakes: Abiquiu Lake and Snow Lake; twice – July-August 2020 and October 2020 (Fig. 1). Each lake has 3 sample sites in the shallow parts of the lakes. EPA Cyan app was utilized to localize potential cyanobacterial blooms within the lakes (Fig. 2). Morphological identification of the dominant species of cyanobacteria in the cHABs was carrying out using light microscopy with the DIC contrast within 24 hours after samples were collected. Pictures of the visible colonies and microcolonies of observed taxa was captured with a digital camera and shared in the publicly available database CRIS

(http://kpabg.ru/cris/?q=node/16). Some particular blooms was used for the confocal microscopy experiments aiming chlorophyll detecting and localization of pigments in the cells. Toxins/bioactive compounds was extracted with mass spectrometer grade acetonitrile prior screening on the tandem mass spectrometer. MRM (Multiple Reaction Method) method was used for the initial screening of major toxins. MasslynX 4.1. software was used chromatogram visualization. Samples ran on Positive mode according to Waters application mode, together with standard for multiple microcystin variants (Degryse et al. 2017).

DNA was extracted using DNeasy UltraClean Microbial Kit (Cat ID: 12224-50, QIAGEN, Venlo, Netherlands). The 16S rRNA gene PCR primers 27F/1492R with barcode on the forward primer were used in a 35-cycle PCR (5 cycle used on PCR products) using the HotStarTaq Plus Master Mix Kit (Qiagen, USA) under the following conditions: 94°C for 3 minutes, followed by 35 cycles of 94°C for 30 seconds, 53°C for 40 seconds and 72°C for 90 seconds, after which a final elongation step at 72°C for 5 minutes was performed. After amplification, PCR products are checked in 2% agarose gel to determine the success of amplification and the relative intensity of bands. Multiple samples are pooled together in equal proportions based on their molecular weight and DNA concentrations. The PCR pool is then purified using Ampure PB beads (Pacific Biosciences).

The SMRTbell libraries (Pacific Biosciences) are prepared following the manufacturer's user guide and sequencing performed at MR DNA (www.mrdnalab.com, Shallowater, TX, USA) on the PacBio Sequel following the manufacturer's guidelines. After completion of initial DNA sequencing, each library undergoes a secondary analysis, Circular Consensus Sequencing, using PacBio's CCS algorithm. The CCS algorithm aligns the subreads individually from each template to generate consensus sequences thereby correcting the stochastic errors generated in the initial analysis. Sequence data is then processed using the MR DNA analysis pipeline (MR DNA, Shallowater, TX, USA). In summary, The CCS sequencing data is depleted of barcodes, oriented 5' to 3', sequences <150bp removed, and sequences with ambiguous base calls removed. Sequences were denoised, OTUs generated and chimeras removed. Operational taxonomic units (OTUs) were defined by clustering at 3% divergence (97% similarity). Final OTUs were taxonomically classified using BLASTn against a curated database derived from and NCBI (www.ncbi.nlm.nih.gov).

5. Description of results; include findings, conclusions, and recommendations for further research.

Based on the morphological observation potentially toxic cyanobacteria such as Microcystis spp. (Fig. 3, 4), Aphanizomenon spp. (Fig.5), and Dolichospermum spp, were found in all samples collected from different reservoirs (for more details, see Table 1). Exception was Elephant Butte Lake, which was a test object and eventually was removed from analysis (Because of lack of the visible cyanobacterial bloom). Next-Generation molecular analysis (PacBio) detected potentially toxic cyanobacterial species in Elephant Butte Lake in contrast to morphological observation. Overall, morphological analysis was accurate and similar to PacBio analysis; however, PacBio revealed more species, being more sensitive (Table 2). PacBio analysis showed general distribution of major bacterial phyla in the samples (Fig.6). Highest relative abundance of the total cyanobacteria have been found in Snow Lake [Sample 1] and in Abiquiu Lake in both seasons (Summer/Fall). In the rest of the samples (Snow Lake 2, 3 and Caballo Lake), cyanobacteria were more frequent in the fall; however species composition dramatically shifted from Aphanizomenon/Dolichospermum prevalence to Microcystis spp. domination. Exception was Caballo Lake where Microcystis spp. dominating community changed to community with Limnothrix and Pseudanabaena. It is quite surprising that in about 2 months, bacterial communities changed significantly. Even though Aphanizomenon spp. could potentially produce microcystins (detected toxins in this study), communities with the presence of Microcystis spp. were actually producing the microcystins. Following lakes were found to contain different microcystin derivatives: Caballo Lake (both water and biomass), Abiquiu Lake (biomass), and Snow lake (mostly biomass). Important to notice that only in fall season Snow Lake showed presence of the toxins. The fact that toxins were not realized into the water may be interpreted as follows: since there are not many predators are alive during cold season, cyanobacterial communities were synthesizing toxins to release them in future to compete with more developed predators (in the spring and summer). Nutrient analysis showed low Nitrogen and low N/P ratios with are typical for cyanobacterial communities (Figure 7, 8). Low nutrient levels are not preventing heterocytous cyanobacteria (they may fix atmospheric nitrogen) such as Aphanizomenon spp., and Dolichospermum spp. to develop. Question is why Microsystis spp. are well developed in oligotrophic ecosystems? More research needed to answer that question. Nutrient analysis did not allow separating major driver of the cHAB. As a conclusion, following New Mexican water bodies: Caballo Lake, Snow Lake, and Abequiu Lake sustained toxic blooms in summer/fall 2020. Several derivatives of microcystin was detected using mass spectrometry: MC-LR, MC-RR, MC-YR, MC-LY (Fig.9). Estimation of the biomass and quantification of the toxin's concentration still needs to be accomplished. After that materials obtained in this research will be published in recognized scientific journal.

6. Provide a paragraph on who will benefit from your research results. Include any water agency that could use your results.

EPA and New Mexico Environment Department will surely use this information if published.

7. Describe how you have spent your grant funds. Also provide your budget balance and how you will use any remaining funds. If you anticipate any funds remaining after May 31, 2021, please contact Carolina Mijares immediately. (575-646-7991; <u>mijares@nmsu.edu</u>)

Purchased items: MC-LR (Toxin standard) SIGMA ALDRICH US 20200709, Chl A (Chlorophyll standard) SIGMA ALDRICH US 20200708 and other standards – \$ 1652.39 Lamp for cyanobacterial isolation – \$ 12.35 DNA analysis – \$ 4025.00 Domestic travel –\$ 1283.52 Freight – \$ 50.88 TOTAL SPENT \$ 7024.14

8. List presentations you have made related to the project.

65th Annual NM Water Conference

9. List publications or reports, if any, that you are preparing. For all publications/reports and posters resulting from this award, please attribute the funding to NM WRRI and the New Mexico State Legislature by including the account number: NMWRRI-SG-2020.

Progress report

- 10. List any other students or faculty members who have assisted you with your project.
- Dr. Jackie Jarvis helped with UPLC/MS. Dr. Peter Cooke helped with confocal microscopy.

Barbara Hunter performed nutrient analysis.

11. Provide special recognition awards or notable achievements as a result of the research including any publicity such as newspaper articles, or similar.

N/A

- 12. Provide information on degree completion and future career plans. Funding for student grants comes from the New Mexico Legislature and legislators are interested in whether recipients of these grants go on to complete academic degrees and work in a water-related field in New Mexico or elsewhere.
- About 90% of project is accomplished. I am going to pursue carrier in academia on projects related to water quality.

Figure 1. Map of the sample sites

Figure 2. Screenshot of the EPA CYAN application, showing potential cHAB in the Caballo Lake, bottom right side (green color)

Figure 3. Macroscopic bloom (toxic) with one of the dominant species *Microcystis aeruginosa* found in Caballo Lake.

Figure 4. Microscopic photograph of potentially toxic cyanobacterium Microcystis aeruginosa.

<image>

Figure 5. Confocal image of the filaments of the *Aphanizomenon flos-aquae* from Snow Lake, chlorophyll A and phycobilins is depicted with red color.

Figure 6. Bar plot of the relative abundance of major bacterial orders. Taxonomic groups that were outside of the scope of research were grouped under the "others" category. The 5 most abundant orders across all samples are displayed in the legend. Note that A: stands for Abiquiu Lake and SL stands for Snow Lake, SUM means summer.

Figure 7. Nutrient analysis of selected reservoir (Caballo Lake) including Phosphorous

Figure 8. Concentration of different forms of Nitrogen in the waterbodies of New Mexico

Figure 9. Chromatograms of the detected toxins. A: MC-LR, B: MC-RR, C:MC-YR, D: MC-LY

Table 1. Morphological characterization of the cHABs collected from the different waterbodies of the New Mexico

	JULY-AUGUST 2020								
		Snow Lake			Abi				
Lakes	Caballo1	1	2	3	1	2	EB		
			Aphanizomeno	Aphanizomeno	Aphanizomeno	Aphanizomeno			
	Microcystis aeruginosa	Aphanizomenon flos-aquae	n flos-aquae	n flos-aquae	n flos-aquae	n flos-aquae			
	Pseudanabaena		Dolichospermu	Dolichospermu	Pseudanabaen	Pseudanabaen			
	mucicola	Microcystis smithii	m spiroides	m sp.	a limnetica	a limnetica			
	Dolichospermum		Dolichospermu						
	spiroides	Dolichospermum sp.	m sp.						
LM	Dolichospermum sp.								
		Diatoms: Stephanodiscus	Diatoms:						
		sp., <i>Cymbella</i> sp.,	Puncticulata		Some				
		Rhopalodia sp., Navicula sp.	sp., Navicula		Dinobryaceae				
	Desmids, Green algae	Euglenoids: Trachelomonas	sp. Rhopalodia		occurs, minor				
Other	and Diatoms: Ulnaria	sp. Dinoflagellates:	sp., Hantzschia	Some centric	Diatoms				
algae	sp. <i>, Cymbella</i> sp.	<i>Ceratium</i> sp.	sp.	diatoms	(Navicula)				
	Bloom was heavily	Bloom former in the shape							
	dominated by	of elongated half-moon							
	cyanobacteria	clusters. Bloom looked like							
	(Dolichospermum sp.	pea-soup, or green paint							
	Microcystis	with visible structure differ							
	aeruginosa) with trace	from					no		
	amounts of Desmids,	Microcyscis/Dolichospermu			Bloom		visibl		
	Green algae and	<i>m</i> blooms. Clusters were			dominated ny		e		
Notes	Diatoms. Some	several millimeters long.			Aphanizomeno		bloo		
:	Microcystis colonies	Microscopically filaments	similar to SL1	similar to SL1	n	similar to A1	m		

had a core (nucleus)	were clustering together in			
with the cells without	the typical			
aerotopes (about 20	Aphanizomenon-like way.			
cells), in the outside	Apical cells within the			
layer aerotopes was	cluster were containing less			
present.	aerotopes and were very			
	elongated to compare with			
	regular vegetative cells,			
	length of apical cells: up to			
	35 micrometers. Apical cell			
	appeared to be narrowed			
	than regular cells, 5			
	micrometers. Intercalary			
	heterocytes were observed,			
	brownish by color with			
	clear pores, L:10-12			
	micrometers, W:6.4-7.6			
	micrometers. Also,			
	elongated akinetes			
	observed with granular			
	texture and slightly			
	different color from regular			
	cells, L:26-70 micrometers,			
	W: 6-7 micrometers.			
	Vegetative cell slightly			
	constricted with bunch of			
	aerotopes, W:6-6.4			
	micrometers, L:same as L,			
	slightly longer than wide.			

Continued

OCTOBER 2020								
	Snow Lake 2			Abiq				
Caballo2	1	2	3	1	2	EB		
		Woronichinia	Microcystis	Microcystis	Microcystis	Dolichospermu		
Limnothrix sp	Microcystis flos-aquae	naegeliana	flos-aquae	aeruginosa	aeruginosa	m sp.		
Pseudanabaen		Microcystis	Aphanizomeno	Pseudanabaen	Pseudanabaen			
a sp	Microcystis viridis	flos-aquae	n flos-aquae	a mucicola	a mucicola			
		Aphanizomeno	Dolichospermu		Microcystis			
Lyngbya sp.	Aphanizomenon flos-aquae	n flos-aquae	m sp.		viridis			
Phacus sp.,			lots of					
Trachelomonas			amoebas,	Diatoms				
sp., Ceratium			flagellates and	(Navicula),	Diatoms,	desmids,		
sp.	Green algae		bacteria	green algae	Green algae	diatoms		
Bloom was								
dominated by	Bloom dominated by Microcystis							
filamentous	spp., Some <i>Microcystis</i> colonies had	Bloom was						
green algae,	a core (nucleus) with the cells	dominated by						
diatoms	without aerotopes (about 20 cells),	Microcystis,						
euglinoids and	in the outside layer aerotopes was	Aphanizomeno						
desmids.	present.	<i>n</i> was minor						

Abbreviations: LM –light microscopy, EB – Elephant Butte Lake

	JULY-AUGUST 2020							
			Snow Lake		Abiquiu			
Lakes	Caballo1	1	2	3	1	EB		
	Synechococcus	Aphanizomenon	Synechococcus	Synechococcus	Aphanizomenon	Microcystis		
PacBio	sp.	flos-aquae	sp.	sp.	flos-aquae	aeruginosa		
				Cyanobium				
	Aphanizomenon			synechococcus	Pseudanabaena	Synechococcus		
	flos-aquae	Anabaena sp.	Cyanobium sp.	sp.	sp.	sp.		
			Cyanobium					
		Synechococcus	synechococcus	Aphanizomenon				
	Cyanobium sp.	sp.	sp.	flos_aquae	Gloeobacter spp.	Cyanobium sp.		
	Chlorogloea	Microcystis	Microcystis		Microcystis	Microcystis		
	microcystoides	aeruginosa	aeruginosa	Cyanobium sp.	aeruginosa	ichthyoblabe		
	Microcystis		Aphanizomenon		Cyanobacterium			
	aeruginosa	Cyanobium sp.	flos-aquae		spp.	Oscillatoria sp.		
	Chroococcidiopsis				Synechococcus	Cyanobacterium		
	spp.	Gloeobacter spp.			sp.	spp.		
					Dolichospermum			
	Microcystis	Microcystis			anabaena flos-	Aphanizomenon		
	ichthyoblabe	ichthyoblabe			aquae	flos-aquae		
	Pseudanabaena	Cyanobacterium				Chroococcidiopsis		
	sp.	spp.				spp.		
		Cyanobium						
		synechococcus				Pseudanabaena		
	Calothrix sp.	sp.				sp.		
		Dolichospermum						
		anabaena flos-				Pseudanabaena		
		aquae				catenata		
						Prochlorococcus		
						spp.		
						Nostoc sp.		

Table 2. Cyanobacterial species composition based on the molecular PacBio r
--

Continued

OCTOBER 2020									
		Snow Lake 2		Abiq					
Caballo2	1	2	3	1	2	EB			
Chroococcidiopsis	Microcystis	Microcystis	Microcystis	Microcystis	Microcystis				
spp.	aeruginosa	aeruginosa	aeruginosa	aeruginosa	aeruginosa	Synechococcus sp.			
	Microcystis	Microcystis	Microcystis	Pseudanabaena	Aphanizomenon	Aphanizomenon			
Cyanobium sp.	ichthyoblabe	ichthyoblabe	ichthyoblabe	sp.	flos-aquae	flos-aquae			
Synechococcus sp.	Woronichinia naegeliana	Aphanizomenon flos_aquae	Cyanobacterium spp.	Aphanizomenon flos-aquae	Microcystis ichthyoblabe	Cuspidothrix aphanizomenon issatschenkoi			
	Aphanizomenon	Woronichinia	Aphanizomenon	Microcystis	Stigonema	Anabaenopsis			
Leptolyngbya sp.	flos-aquae	naegeliana	flos-aquae	ichthyoblabe	mamillosum	nadsonii			
Aphanizomenon	Gloeobacter								
flos-aquae	spp.	Anabaena sp.	Cyanobium sp.	Chroococcus sp.		Cyanobium sp.			
		Prochlorococcus	Dolichospermum	Cyanobacterium		Pseudanabaena			
	Microcystis sp.	spp.	planctonicum	spp.		catenata			
	Synechococcus	Cyanobacterium							
	sp.	spp.				Chondrocystis sp.			
	Prochlorococcus	Anabaenopsis				Cyanobacterium			
	spp.	nadsonii				spp.			
		Synechococcus				Chroococcidiopsis			
		sp.				spp.			
		Microcystis sp.							
		Leptolyngbya							
		sp.							